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Abstract In March 1995 a mass mortality of pilchard started to occur in South Australia; this spread very
rapidly throughout the Australian pilchard’s range, later reaching New Zealand. In November 1998 a
similar mass mortality broke out in South Australia and alse spread, at a slower rate, throughout the
Australian range. The mortality appeared to be caused by a herpesvirus. The mortality spread as a classical
eptdemic front, but its speed of progress and the brief duration of mortalities at a given location are
extrame. We apply simple epidemic modelling techniques, SIR and SEIR modelling, to examine the factors
behind the spread of this mortality and the differences between the 1995 and 1998/9 epidemics. We discuss
biological factors influencing the critical processes of long-distance (D} and local () transmission of
infection.

1. INTRODUCTION A second mortality event began in November
1998 and spread throughout the Australian range

_In March 1995 mass mortality of piichards . of the piichard by mid 1999.

{(Sardinops sagax} occurred on the central South

Australian coast (Whittington et al. [1997]). The mortality was not related to physical or

Over the next three months these mass mortality biological oceanographic features (Griffin et al.
events-then spread-both east-and west to-cover -~ [1997])y or to the occurrence of toxic algae - -

the entire range of the Australian pilchard (Fig. (Fletcher et al. [1997]}). The anly common

Dy, Simifar mortality occurred in New Zealand feature in the mortality events was the presence

from June. of herpesvirus in the gills of the fish; this virus

was absent more than a few days before mortality

1995 Epidemic {(Whittington et al. { 1997]}.
3000 - The speed of the epidemic, at approximately 30
L. 2000 PR km ' in 1995, was remarkable. This s close to
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£ [ the maximum swimuning speed of piichards. The
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E ok e ¥atben L mortf}hty lasted ]*.01' 0n§3{ a few days at any given
2 Mar  Apr  Apr Ml gy May dun  din location, except in the first few weeks of the
Rone i epidemic. The speed of the 1998/9 epidemic
a0ee . front was approximately half that of 1995, but
at . .
" this was still a spectacular rate of spread.

Figure |. Radial distance from the site of the
first mass mortality of subsequent reported
events. Negative = castward spread.

In spite of its spectacular nature, the mortality
appeared to affect only a small proportion of the
pilchards, even within a given scheol many
individuals survived.. Some estimates are as low
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as [0 — 15% (Whittington et al, {1997]). Other
estimates are substantially higher, but substantiat
numbers of pilchards survived.

The pilchard is an abundant fish in temperate
coastal waters throughout the Southern
Hemisphere, and the North Pacific (Parish et al.
[19891). It forms a critical link in the food chain,
teeding on plankton (both zoo- and phyto-) and
being tood for larger fish, birds and mammals.

In Australia, 1ts range is largely restricted to a
narrow band along the continental shelf,

In the following paper we describe the simple
modelling methods which are applied to examine
the spread of the epidemic, We also examine the
influence of biology or mode! parameterisation
and hence behavicur. These simple models are
useful in themselves and also act as a guide for
the analysis of more complex dynamic models,
which may lack explicit analytical solutions,

2. A SIMPLE EPIDEMIC MCGDEL

A standard SIR epidemic model divides the host
population into susceptible (S), infected (1) and
removed (R) sub-populations (Anderson and
May [1979]). Transmission of the virus to new
hosts occurs at a rate 8, T’ d'. Infected
individuals recover (ordie) atarate ™. A

. simple version of this model is:

dS/dt = -BIS
d Udt = BIS — ol 2)
dR/dE = o (3
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Figure 2. Development of an 8IR epidemic at
single focation,

Populations are normalised to the average inttial
total population and are initially entirely
susceptible, 1.6, Ny = Sy= [, Gradually the S
become infected 1, which in turn are removed ta
R (Fig. 2). R includes both deaths and recovery,
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in either case these fish are no longer involved in
the epidemic. Because the pilchard mortality
tasts for only a short period at a given location,
factors such as background mortatity or births are
insignificant during the passage of the disease.

Such models have a threshold population of
susceptible that is required for an epidemic to be
initiated:

S = E}'./B 4
Since there is a 2 — 4 day period betwaen the
onset of lesions and mortality the value of o is
approximately 0.25 d”'. To account for survival
of 85% by avoidance of the infection would
require § of <0.3 d”'. This level of production of
infection (particularly the net production) is
incompatible with the observed focal mortality,
which generally occurred over a few days.
Therefore, significant numbers of the survivars
appear to have been infected but then recovered,

The model can be extended to include an
incubation phase of infection during which
viruses accumulate in the infected pilchard but
are not yet released. This incubation phase B,
which turns over at rate ¢ d ™', leads to the
extended model:

dS/de = -BIS (3)
dE/dt = BIS - oF (6)
d Idt = F - ol (7)

dR/dt = ql (8)

This adoption of an SEIR model does not change
the threshold population in this case. There is

_negligible mortality of E, given the brief duration . .

of the epidemic, and hence it is still true that PIS
= ol. Addition of this phase does, however, tend
to increase the time required for the infection to
buiid up.

3. SPATIAL EPIDEMIC SPREAD

Perhaps the most ourstanding feature of the 1995
and 1998/9 epidemics was the extremely rapid
speed with which they spread over 1000’s of km.
We add a Fickian diffusion term to the equations
to replicate this spread, Because the pilchards are
restricted to a continental shelf that is much
longer than it is wide, we use a | D diffusion
model to describe flux.

Biological waves of the spread of populations
and epidemics (pathogen populaiions) are well



known. The simplest such wave, for a single
invading population N with initial growth rate r
d" and diffusion coefficient D (km® d'), is
derived from the Fisher equation. This equation
{in 1-D} has the formula

d N/t = IN(] - N} + DFN/G® (9}
[t generates a population that spreads as an
invasive wave with a velocity of

Vv = 29(D). (10)
MNote that this wave’s speed is independent of
time and depends rather simply on diffusion and
the ocal population growth rate at low N.

Epidemics too can travel as spatial waves, With
diffusion the SIR model becomes:

dS/dt = -BIS + D*S/ax an
d dt = BIS - ad + DI/Ox (12)
dR/dt = ol + DI*RAIK’ (13

This model generates a travelling wave of
infection (Fig. 3). As in the Fisher equation, the
wave speed is driven by diffusion and the local
transmission of infection. The wave has a
constant velocity and the value of this velocity
can also be derived analytically.
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Figure 3. The numerically calculated passage of
an epidemic at 10 day intervals, found using an
SIR model.

This model has the travelling wave solution (see
Murray {1993 for derivation):

Vo= VRS0 k(1 - wiBSy)  (14)
Provided the initial susceptible population, Sy, is
greater than o/f, i.e. the threshold population for
epidemics to occur. If the wmitial S population is
substantially greater than the threshold then the
speed of the front tends to the Fisher travelling
wave solution 2V(rD), production of new
infection B8y being equivalent to v Therefore
the wave speed 1s equally sensitive to changes in
local and long-distance transmission.

Addition of the incubation phase of infection
complicates transmnission. Yachi et al, [1989]
derived the foliowing velocity for waves of
rabies, in which the incubation is tong relative to
the infectious, rabid, phdse
V =N2D{V(G - o) + 46BK)]
-(c+o+2a)}y (i5
In this case K is the carrying capacity, equivalent
to 8y, and a is background mortality, which is
negligible for pilchards given the rapid passage
of the front. We can alse note that both o and o
are small, given this rapid turnover, and hence (o
— o) is very small; particufarly if ¢ and o0 are
comparable in size, The equation approximates
to:
V= V2D {V46BSH] ~ o -~ o))
The wave speed V {km d”') is thus dependent
upon VD and *V4oBS,. when V is not small.
This equation also has a threshold for epidemic
transmission that is determined by < and «.

(16)

The speed of the wave is thus driven by relatively
simpie processes and, in simple cases, exact
dependence on parameters can be found. More
complex models may not have such simple
solutions, but similar processes underlie the
wave's velocity. These simpie models can be
used to guide experimental analysis.

4. DISPERSION AND THE ROLES OF FISH |

AND BIRDS

The parameter D, long-distance diffusion, plays a

- critical role-in the epidemic’s spread. The
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extreme rapidity of the spread of infection (30
km & in 1995) means that physical mixing
processes cannet account for the spread of
infection (Griffin et al. [19971). Theretore the
movement of animals must drive the infections
spread.

There are 2 potentiat means of viral spread, the
pilchards themselves or carrier organisins,
probably birds {or both). The different carriers
are not simply interchangeable; they can give
different responses to the spread of the epidemic
in the case of changes in the nature of the virus.

It local viral transmission () is increased the
diffusion-based models predict increased .
epidemic wave speed without fimit. The
observed 30 km d”' spread of the epidemic is
close to the pilchard maximum swimming speed



{more on this shortly). This imposes a limit on
epidemic transmission speed. Birds, on the other
haad. can travel much faster than 30 km d7', and
therefore the epidemic speed would indeed be
expected to increase if local transmission
increased. The nature of the long-distance
transport vector is therefors important in
predicting the response of the epidemic to change
in local transmission,

Holmes [ 1993] has looked at an alternative
model, the telegraph model. This model has the
property that the maximum wave speed is indeed
restricted to the maximum speed of the organism,
She derived the following relationship between
velocities predicted under the two modeis (based
on the Fisher equation).

V/Vy= V0D + 1)
In this case V, = telegraph velocity, ¥V, =
diffuston based velocity, r is local increase
(equivalent to bS,), D is the diffusion coetficient
and yis the organisms velocity.

{a7)

As 24(rD) tends to ¥, i.e. the Fisher waves speed
caleulated by diffusion tends to the maximum
swimming speed, this ratio tends to 0.8 (Fig, 4).
Thus, only when the epidemic’s speed is very
close t v 1s there significant distortion
introduced by the use of diffusion-based
transmission equations.

wave speed

Figure 4. Daily progress of a Fisher wave
caleulated by diffusion D or by telegraph maodels
with g of 5 km and 10 km d.

The clarity with which the speed of the wave is
shown to be dependent upon D in a simple model
is a very good ilfustration of the value of such
simple models. Without simplification it would
be easy to miss this constraint on the use of -
diffusion equations. Because such equaiions are
the standard means of modelling biological

transport processes they are often used without
reflection on their limitations.

The extent of diffusion, and hence the value of
D, depends upon not only the velocity of the
diffusing organisms but also on their pattern of
motion. The formula giving this dependence is

D=L%27 (18)
We consider the fish to swim in legs of a given
length before changing direction at random. L is
the length of a leg and T s the time over which it
is swum. Leg length depends upon time taken
and swimming speed: L =T, 50 D = 0.5y'T. As
wave speed depends upon VD it depends linearly
upon the velocity of the organism and with VT,
the time between changes in direction,

Maximum piichard swimming speed is about 3
km h'', aithough this probably cannot be
maintained for loag periods {Blaxter and Hunter
[1982], Beamish [1984]). A minimum value for
the maximum speed is 1.25 ki b, given the
epidemic’s observed velocity of 30 km d,
provided that fish are the principle means of
spread. If this fish motion is accounted for by |
hour legs of swimming in a given direction then
D =181t 108 km’ ¢, for 1.25t0 3 km h*
swimming speed.  [f the legs are swum for
between 15 minutes and 3 hours then a total
range of D =4.7 - 324 km® d”'. Tf bird vectors
account for dispersal then much larger diffusicn

“coetficients are possibie, “However, Tatge D with
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smail B is not consistent with the brief local
duration of the epidemic.

275 3
speed (ken b-1)

128 175 225

Figure 5. Lengths of legs required to generate D
of 10 to 110 km® d™'.

The length of the legs that are swum by the fish
can be derived for a given value of D and a
specific switming speed. Because pilchards
swim in schools, it is these schools which diffuse,
not individual fish. If pilchards seek out patches



“change in pilchard behaviour is unikely

ol zooplankton separated by a few km (2.5 ko
thie model of Nonacs et al. [1998]), then leg
lengths of this order would be a reasonable
pattern for the fish to adopt. Such a pattern is not
consistent with tower diffusion rates, given the
maximum swimming speed is at least 1.25 km h™'
(Fig. 3). Appropriate swimming feg lengths fit
most closety with the fower range of possible
swimming speeds of 1.25 -2 km n', or with very
high diffusion coefficients.

5. TRANSMISSION AND LOCAL
INFECTION, p AND o

The other critical factor controlling the
epidemic’s rute of spread is the local
development of infection. This is controlled
largely by the value of the local transmission
coefficient B, and the rate at which infections
develop within the host o, As we will dascuss,
viral parameters, particufarly [, are the most
fikely to evolve with time.

Mathematically, the SEIR epidemic front speed
is more sensitive to D than o . I is pasticularly
sensitive to changes in velocity, v. However, for
D to change requires major changes in the
hehaviour of fish or birds. In different parts of
Australia, different pilchard stocks spawn every
month (Fletcher et al. [ 1997]) so a nationwide
Seabirds do tend {0 breed in spring and the extra
fishing effort reguired could enhance D in spring

4985 relative to autuma/winter 1998/9.

Change in the pature of the virus, particularly the
value of §, ts biologically most likely to explain
the observed differences in the speeds of the
epidemic of 1995 and 1998/9. Exceptatlow V,
it is difficult to separate the effects of ¢ and B on
wave speed and so we will consider the
combined valize Bo. The value of o appears 1o
play relatively minor role and there is no
evidence of a farge decline in Sy Change in §
requares a change in the local transmission of the
virus. This could be due to reduced vival
production or infectivity or to increased viral
resistance by the pilchards. Change in & could
similarly be due to reduced viral produciion or
increased host resistance. Viruses often show
rapid evolation of properties such as virulence
(Ebert [ 1998]). whereas evolution of fish is likely
to be slower.
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The value of 3o can be derived for a given
vatue in a given model, given that the other
parameters are known. Under the SEIR model
the focal transmission 1s equivalent to:

Bo = (V2D + & + a}/4S8, (18)

Given observed V of 30 km d”! and o of 0.25 d°,
we can estimate the value of Po for a given value
of D at the normalised population density S, = 1,
provided that o is small relative to V32D,

The range of I values, derived in the previous
section for pilchard swimming, was 4.7 to 324
km® d'! from which is derived Bo of 3.6 — 9000
47 {normalised to Ny). A restricted range of D =
18 to 108 km® d ' gives §6 22 — 600 d”. Lower
values of Ba apply if higher D values result from
bird-based transmission.

The rate of progression of the 1998/9 epidemic
was about half that of the 1995 epidemic. This
drop in V indicates Bo (which varies with *VV)
fell by a factor of 16 during the pertod. Because
there 15 no evidence that the length of the
infection period changed to such a large degree,
it is likely that B accounted for most of this
change. Changes in these two parameters are
likely to compliment each other.

The [998/9 epidemic remained locally short-

Jived and so even the reduced 1998/9 value of Bo..

was still high. The lower limits of P are the
subject of continuing numerical experimentation.

&, DISCUSSION

The simple models presented show a constant
spatial rate of spread of an epidemic, provided
the initial host population exceeds a calculable
threshold. This constant speed is dependent
upon local and long-distance transmission
processes in simple ways.

Conversely, for a known rate of spread and a
given model we can use the model parameters to
provide constraints upon each other. In
particular, the values of the most critical
parameters D and Bo (or B in the SIR model) are
clasely constrained by each other.

Because viruses can evolve rapidly, changes in f3,
enhanced by changes in ¢, are likely to explain



the different speeds of the 1995 and 1998/9
epidemics. However, changes in bird-based D
might also contribute.

The medets show there are important differences
between fish-base and bird-based processes for
the long-distance spread of the epidemic. If the
piichards are the main carriers then the epidemic
has a limit to 1ts speed that is close to that
observed in 1995, In this case the wave speed
could not respond to increased viral virulence.
With birds, a far higher speed is possible and so
increased virulence could result in increased
epidemic speed. Spring breeding in birds may
cause seasonal changes in a bird-based D,
Different pilchard populations breed at different
times of year and so no Auvstralia-wide seasonal
patters: in pilchard-based I is likely.

With only 2 epidemics we cannot definitively
resolve the fransport agent using these simple
models. However, vatues of D which generate
appropriate epidemic speed, which are implied
by the fairly high values of B that are required to
generate observed rapid local turnover, are
consistent with fish-base transmission. Indeed,
constraints on the estimation of D that are
provided by the epidemic modet may provide a
new insight info pilchard movement patterns.

These analytical solutions of simple models do
infection. They are not intended to. Dynamic
features tnclude the eriginal development of the
epidemic in the South Australian initial focus of
infection. Application of dynamic modelling is

required to look at these dynamic processes.

More sophisticated models that incorporate
factors such as multiple transmission vectors,
fixed infection phase lengths (instead of
continuous furnover) and the effects of non-
uniform populations are in the process of
development. These will allow us te look at
spatial and temporal variation within the
epidemics. These models may not all have
analytical solutions, but can use the analytical
solutions derived from these simpie models as a
guide for numerical experimentation.
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